Barriers to Personalization

Recently, I stumbled onto survey results from marketers regarding “data-related headaches,” published by a reputable source. What surprised me the most was not the list of the pain points, but the way marketers expressed the severity of pains. They collectively answered that “moving data among different silos” and “gaining a

Now, I am not at all saying that personalization engines are without merit; there are many instances where marketers need to react to customers’ needs in near real-time. For such immediacy, the journey must be prioritized based on timing more than anything else. Simply, you don’t have any time to waste when timing is of essence. If a customer walks into a store and asks for a product that you are selling, would you waste time checking her profile, or would you just start serving her? Maybe types of offers may be customized, but that, too, would be reactionary. In other words, when the information (or data) is “hot,” act on it fast. Create a separate journey map for such cases.

Nonetheless, that would be what I call “personalizing sometimes only for some people.” In reality, marketers do not get to know everything about everyone. Very rarely, consumers explicitly reveal their profiles or intent. When marketers get to know small bits about anyone, they literally latch onto them, almost out of desperation. To get to the level of “personalizing all the time for everyone,” marketers must fill in the blanks with statistical techniques, projecting scarce but valuable “known” information to the unknown universe (refer to “No One Is One-Dimensional”).

The third barrier that I often encounter is not solely about data or analytics. Let’s say that marketers get to access very clean data and model-based personas. Do they have the ability to display different products and offers on websites? Are the landing pages modularized? Do they have the ability to create different versions of emails with varying feature products and offers, based on real or inferred preferences and personas? Does the personalization engine support all channel activities, or just some digital channels? All of these capabilities should be procured and installed to make personalization real for the audience.

And here is the final kicker: Do marketers have enough content to enable such versioning? If they have ample amounts of creative scripts, artwork, photos and other materials, are they being managed by a centralized content management system? Is such system linked to the personalization engine, so that automation is possible? Or are critical media contents just locked in some agency servers without any tagging?

The rubber meets the road when the customer gets to “see” the customized content. That could be through computers, tablets, mobile phones, inbound or outbound calls, chats, billboards, custom-bound coupon books, TV set-top boxes, or wearable devices of the future (and some versions of present days). Yes, people’s personas and preferences may not change that drastically, but the delivery methods — and related technologies — do change, depending on what they are looking at. I have been talking about a “buyer-centric portrait” or a “360-degree view of a customer” all along, but none of those fancy segments and personas would matter if the message were not properly delivered to the target through the right channel with the right content at the right time.

Through this series, I have illustrated steps that marketers must take in terms of data and analytics for personalization efforts. However, to make the personalized journey complete, marketers should see the challenges horizontally, as well, and acquire abilities to display customized messages through various channels. Parallel to that, content strategy should move into higher gears, as personalization efforts definitely require a wider variety of content in an organized fashion. That means for proper personalization, marketers must put efforts on at least four concurrent areas – data management, analytics, content delivery and content management.

I have been emphasizing a properly designed data roadmap should precede any data or analytics activities to avoid mishaps and unnecessary costs. Likewise, content management and the delivery side of the endeavor require separate strategies, roadmaps and technologies, while all will be conjoined at the moment of the contact with the target individual. And common personalization engines definitely do not cover the whole spectrum of these necessary activities. I would just call that a good practice run for Round No. 1.

Author: Stephen H. Yu

Stephen H. Yu is a world-class database marketer. He has a proven track record in comprehensive strategic planning and tactical execution, effectively bridging the gap between the marketing and technology world with a balanced view obtained from more than 30 years of experience in best practices of database marketing. Currently, Yu is president and chief consultant at Willow Data Strategy. Previously, he was the head of analytics and insights at eClerx, and VP, Data Strategy & Analytics at Infogroup. Prior to that, Yu was the founding CTO of I-Behavior Inc., which pioneered the use of SKU-level behavioral data. “As a long-time data player with plenty of battle experiences, I would like to share my thoughts and knowledge that I obtained from being a bridge person between the marketing world and the technology world. In the end, data and analytics are just tools for decision-makers; let’s think about what we should be (or shouldn’t be) doing with them first. And the tools must be wielded properly to meet the goals, so let me share some useful tricks in database design, data refinement process and analytics.” Reach him at

Leave a Reply

Your email address will not be published. Required fields are marked *