Data Must Flow, But Not All of Them

Like any resource like water, data may be locked in wrong places or in inadequate forms. We hear about all kinds of doomsday scenarios related to the water supply in Africa, and it is because of uneven distribution of water thanks to drastic climate change and border disputes.

data flow and Marketing channelsThree quarters of this planet’s surface is covered with water. Yet, human collectives have to work constantly to maintain a steady supply of fresh water. When one area is flooded, another region may be going through some serious drought. It is about distribution of resources, not about the sheer amount of them.

Data management is the same way. We are clearly living in the age of abundant data, but many decision-makers complain that there are not enough “useful” data or insights. Why is that?

Like any resource like water, data may be locked in wrong places or in inadequate forms. We hear about all kinds of doomsday scenarios related to the water supply in Africa, and it is because of uneven distribution of water thanks to drastic climate change and border disputes. Conversely, California is running out of its water sources, even as the state is sitting right next to a huge pond called the Pacific Ocean. Water, in that case, is in a wrong form for the end-users there.

Data must flow through organizations like water; and to be useful, they must be in consumable formats. I have been emphasizing the importance of the data refinement process throughout this series (refer to “Cheat Sheet: Is Your Database Marketing Ready?” and “It’s All about Ranking”). In the data business, too much emphasis has been put on data collection platforms and toolsets that enable user interface, but not enough on the middle part where data are aligned, cleaned and reformatted though analytics. Most of the trouble, unfortunately, happens due to inadequate data, not because of storage platforms and reporting tools.

This month, nonetheless, let’s talk about the distribution of data. It doesn’t matter how clean and organized the data sources are, if they are locked in silos. Ironically, that is how this term “360-degree customer view” became popular, as most datasets are indeed channel- or division-centric, not customer-centric.

It is not so difficult to get to that consensus in any meeting. Yeah sure, let’s put all the data together in one place. Then, if we just open the flood gates and lead all of the data to a central location, will all the data issues go away? Can we just call that new data pond a “marketing database”? (Refer to “Marketing and IT; Cats and Dogs.”)

The short answer is “No way, no sir.” I have seen too many instances where IT and marketing try to move the river of data and fail miserably, thanks to the sheer size of such construction work. Maybe they should have thought about reducing the amount of data before constructing a monumental canal of data? Like in life, moving time is the best time to throw things away.

IT managers instinctively try to avoid any infrastructure failure, along with countless questions that would rise out of dumping “all” of the data on top of marketers’ laps. And for the sake of the users who can’t really plow through every bit of data anyway, we’ve got to be smarter about moving the data around.

The first thing that data players must consider is the purpose of the data project. Depending on the goal, the list of “must-haves” changes drastically.

So, let’s make an example out of the aforementioned “360-degree customer view” (or “single customer view”). What is the purpose of building such a thing? It is to stay relevant with the target customers. How do we go about doing that? Just collect anything and everything about them? If we are to “predict” their future behavior, or to estimate their propensities in order to pamper them through every channel that we get to use, one may think that we have to know absolutely everything about the customers.

Author: Stephen H. Yu

Stephen H. Yu is a world-class database marketer. He has a proven track record in comprehensive strategic planning and tactical execution, effectively bridging the gap between the marketing and technology world with a balanced view obtained from more than 30 years of experience in best practices of database marketing. Currently, Yu is president and chief consultant at Willow Data Strategy. Previously, he was the head of analytics and insights at eClerx, and VP, Data Strategy & Analytics at Infogroup. Prior to that, Yu was the founding CTO of I-Behavior Inc., which pioneered the use of SKU-level behavioral data. “As a long-time data player with plenty of battle experiences, I would like to share my thoughts and knowledge that I obtained from being a bridge person between the marketing world and the technology world. In the end, data and analytics are just tools for decision-makers; let’s think about what we should be (or shouldn’t be) doing with them first. And the tools must be wielded properly to meet the goals, so let me share some useful tricks in database design, data refinement process and analytics.” Reach him at stephen.yu@willowdatastrategy.com.

Leave a Reply

Your email address will not be published. Required fields are marked *