It’s All About Ranking

The decision-making process is really all about ranking. As a marketer, to whom should you be talking first? What product should you offer through what channel? As a businessperson, whom should you hire among all the candidates? As an investor, what stocks or bonds should you purchase? As a vacationer, where should you visit first?

The decision-making process is really all about ranking. As a marketer, to whom should you be talking first? What product should you offer through what channel? As a businessperson, whom should you hire among all the candidates? As an investor, what stocks or bonds should you purchase? As a vacationer, where should you visit first?

Yes, “choice” is the keyword in all of these questions. And if you picked Paris over other places as an answer to the last question, you just made a choice based on some ranking order in your mind. The world is big, and there could have been many factors that contributed to that decision, such as culture, art, cuisine, attractions, weather, hotels, airlines, prices, deals, distance, convenience, language, etc., and I am pretty sure that not all factors carried the same weight for you. For example, if you put more weight on “cuisine,” I can see why London would lose a few points to Paris in that ranking order.

As a citizen, for whom should I vote? That’s the choice based on your ranking among candidates, too. Call me overly analytical (and I am), but I see the difference in political stances as differences in “weights” for many political (and sometimes not-so-political) factors, such as economy, foreign policy, defense, education, tax policy, entitlement programs, environmental issues, social issues, religious views, local policies, etc. Every voter puts different weights on these factors, and the sum of them becomes the score for each candidate in their minds. No one thinks that education is not important, but among all these factors, how much weight should it receive? Well, that is different for everybody; hence, the political differences.

I didn’t bring this up to start a political debate, but rather to point out that the decision-making process is based on ranking, and the ranking scores are made of many factors with different weights. And that is how the statistical models are designed in a nutshell (so, that means the models are “nuts”?). Analysts call those factors “independent variables,” which describe the target.

In my past columns, I talked about the importance of statistical models in the age of Big Data (refer to “Why Model?”), and why marketing databases must be “model-ready” (refer to “Chicken or the Egg? Data or Analytics?”). Now let’s dig a little deeper into the design of the “model-ready” marketing databases. And surprise! That is also all about “ranking.”

Let’s step back into the marketing world, where folks are not easily offended by the subject matter. If I give a spreadsheet that contains thousands of leads for your business, you wouldn’t be able to tell easily which ones are the “Glengarry Glen Ross” leads that came from Downtown, along with those infamous steak knives. What choice would you have then? Call everyone on the list? I guess you can start picking names out of a hat. If you think a little more about it, you may filter the list by the first name, as they may reflect the decade in which they were born. Or start calling folks who live in towns that sound affluent. Heck, you can start calling them in alphabetical order, but the point is that you would “sort” the list somehow.

Now, if the list came with some other valuable information, such as income, age, gender, education level, socio-economic status, housing type, number of children, etc., you may be able to pick and choose by which variables you would use to sort the list. You may start calling the high income folks first. Not all product sales are positively related to income, but it is an easy way to start the process. Then, you would throw in other variables to break the ties in rich areas. I don’t know what you’re selling, but maybe, you would want folks who live in a single-family house with kids. And sometimes, your “gut” feeling may lead you to the right place. But only sometimes. And only when the size of the list is not in millions.

If the list was not for prospecting calls, but for a CRM application where you also need to analyze past transaction and interaction history, the list of the factors (or variables) that you need to consider would be literally nauseating. Imagine the list contains all kinds of dollars, dates, products, channels and other related numbers and figures in a seemingly endless series of columns. You’d have to scroll to the right for quite some time just to see what’s included in the chart.

In situations like that, how nice would it be if some analyst threw in just two model scores for responsiveness to your product and the potential value of each customer, for example? The analysts may have considered hundreds (or thousands) of variables to derive such scores for you, and all you need to know is that the higher the score, the more likely the lead will be responsive or have higher potential values. For your convenience, the analyst may have converted all those numbers with many decimal places into easy to understand 1-10 or 1-20 scales. That would be nice, wouldn’t it be? Now you can just start calling the folks in the model group No. 1.

But let me throw in a curveball here. Let’s go back to the list with all those transaction data attached, but without the model scores. You may say, “Hey, that’s OK, because I’ve been doing alright without any help from a statistician so far, and I’ll just use the past dollar amount as their primary value and sort the list by it.” And that is a fine plan, in many cases. Then, when you look deeper into the list, you find out there are multiple entries for the same name all over the place. How can you sort the list of leads if the list is not even on an individual level? Welcome to the world of relational databases, where every transaction deserves an entry in a table.

Relational databases are optimized to store every transaction and retrieve them efficiently. In a relational database, tables are connected by match keys, and many times, tables are connected in what we call “1-to-many” relationships. Imagine a shopping basket. There is a buyer, and we need to record the buyer’s ID number, name, address, account number, status, etc. Each buyer may have multiple transactions, and for each transaction, we now have to record the date, dollar amount, payment method, etc. Further, if the buyer put multiple items in a shopping basket, that transaction, in turn, is in yet another 1-to-many relationship to the item table. You see, in order to record everything that just happened, this relational structure is very useful. If you are the person who has to create the shipping package, yes, you need to know all the item details, transaction value and the buyer’s information, including the shipping and billing address. Database designers love this completeness so much, they even call this structure the “normal” state.

But the trouble with the relational structure is that each line is describing transactions or items, not the buyers. Sure, one can “filter” people out by interrogating every line in the transaction table, say “Select buyers who had any transaction over $100 in past 12 months.” That is what I call rudimentary filtering, but once we start asking complex questions such as, “What is the buyer’s average transaction amount for past 12 months in the outdoor sports category, and what is the overall future value of the customers through online channels?” then you will need what we call “Buyer-centric” portraits, not transaction or item-centric records. Better yet, if I ask you to rank every customer in the order of such future value, well, good luck doing that when all the tables are describing transactions, not people. That would be exactly like the case where you have multiple lines for one individual when you need to sort the leads from high value to low.

So, how do we remedy this? We need to summarize the database on an individual level, if you would like to sort the leads on an individual level. If the goal is to rank households, email addresses, companies, business sites or products, then the summarization should be done on those levels, too. Now, database designers call it the “de-normalization” process, and the tables tend to get “wide” along that process, but that is the necessary step in order to rank the entities properly.

Now, the starting point in all the summarizations is proper identification numbers for those levels. It won’t be possible to summarize any table on a household level without a reliable household ID. One may think that such things are given, but I would have to disagree. I’ve seen so many so-called “state of the art” (another cliché that makes me nauseous) databases that do not have consistent IDs of any kind. If your database managers say they are using “plain name” or “email address” fields for matching or summarization, be afraid. Be very afraid. As a starter, you know how many email addresses one person may have. To add to that, consider how many people move around each year.

Things get worse in regard to ranking by model scores when it comes to “unstructured” databases. We see more and more of those, as the data sources are getting into uncharted territories, and the size of the databases is growing exponentially. There, all these bits and pieces of data are sitting on mysterious “clouds” as entries on their own. Here again, it is one thing to select or filter based on collected data, but ranking based on some statistical modeling is simply not possible in such a structure (or lack thereof). Just ask the database managers how many 24-month active customers they really have, considering a great many people move in that time period and change their addresses, creating multiple entries. If you get an answer like “2 million-ish,” well, that’s another scary moment. (Refer to “Cheat Sheet: Is Your Database Marketing Ready?”)

In order to develop models using variables that are descriptors of customers, not transactions, we must convert those relational or unstructured data into the structure that match the level by which you would like to rank the records. Even temporarily. As the size of databases are getting bigger and bigger and the storage is getting cheaper and cheaper, I’d say that the temporary time period could be, well, indefinite. And because the word “data-mart” is overused and confusing to many, let me just call that place the “Analytical Sandbox.” Sandboxes are fun, and yes, all kinds of fun stuff for marketers and analysts happen there.

The Analytical Sandbox is where samples are created for model development, actual models are built, models are scored for every record—no matter how many there are—without hiccups; targets are easily sorted and selected by model scores; reports are created in meaningful and consistent ways (consistency is even more important than sheer accuracy in what we do), and analytical language such as SAS, SPSS or R are spoken without being frowned up by other computing folks. Here, analysts will spend their time pondering upon target definitions and methodologies, not about database structures and incomplete data fields. Have you heard about a fancy term called “in-database scoring”? This is where that happens, too.

And what comes out of the Analytical Sandbox and back into the world of relational database or unstructured databases—IT folks often ask this question—is going to be very simple. Instead of having to move mountains of data back and forth, all the variables will be in forms of model scores, providing answers to marketing questions, without any missing values (by definition, every record can be scored by models). While the scores are packing tons of information in them, the sizes could be as small as a couple bytes or even less. Even if you carry over a few hundred affinity scores for 100 million people (or any other types of entities), I wouldn’t call the resultant file large, as it would be as small as a few video files, really.

In my future columns, I will explain how to create model-ready (and human-ready) variables using all kinds of numeric, character or free-form data. In Exhibit A, you will see what we call traditional analytical activities colored in dark blue on the right-hand side. In order to make those processes really hum, we must follow all the steps that are on the left-hand side of that big cylinder in the middle. Preventing garbage-in-garbage-out situations from happening, this is where all the data get collected in uniform fashion, properly converted, edited and standardized by uniform rules, categorized based on preset meta-tables, consolidated with consistent IDs, summarized to desired levels, and meaningful variables are created for more advanced analytics.

Even more than statistical methodologies, consistent and creative variables in form of “descriptors” of the target audience make or break the marketing plan. Many people think that purchasing expensive analytical software will provide all the answers. But lest we forget, fancy software only answers the right-hand side of Exhibit A, not all of it. Creating a consistent template for all useful information in a uniform fashion is the key to maximizing the power of analytics. If you look into any modeling bakeoff in the industry, you will see that the differences in methodologies are measured in fractions. Conversely, inconsistent and incomplete data create disasters in real world. And in many cases, companies can’t even attempt advanced analytics while sitting on mountains of data, due to structural inadequacies.

I firmly believe the Big Data movement should be about

  1. getting rid of the noise, and
  2. providing simple answers to decision-makers.

Bragging about the size and the speed element alone will not bring us to the next level, which is to “humanize” the data. At the end of the day (another cliché that I hate), it is all about supporting the decision-making processes, and the decision-making process is all about ranking different options. So, in the interest of keeping it simple, let’s start by creating an analytical haven where all those rankings become easy, in case you think that the sandbox is too juvenile.

Picking the Right Social Selling Training: A Cheat Sheet

Social selling training is on the agenda for B-to-B sellers in 2014. Sales reps and dealers are under increasing pressure to speed-up prospecting using LinkedIn, blogs, Twitter and more. But how can you choose the best social selling training or trainer for your organization?

Social selling training is on the agenda for B-to-B sellers in 2014. Sales reps and dealers are under increasing pressure to speed-up prospecting using LinkedIn, blogs, Twitter and more. But how can you choose the best social selling training or trainer for your organization?

Here’s where to start. Follow these steps to make the best decision. Plus, I’ll show you a way to make sure you, personally, benefit in the eyes of your boss.

7 Point Social Selling Checklist

  1. Create selection criteria and request for proposal email.
  2. “Short-list” candidates and solicit proposals.
  3. Review proposals.
  4. Interview best candidates & check references.
  5. Negotiate, review and sign contract.
  6. Assess your team.
  7. Start the training and report effectiveness.

Want to get started on this process? Print-off this Social Selling Training Cheat Sheet PDF. (No registration needed)

Selection Criteria
Will your sellers learn social selling tactics or will they start doing? Only consider training that:

  • teaches a practical, repeatable system based in traditional copywriting skills,
  • helps sellers take “first steps” to apply the system,
  • promises outcomes like more appointments & more response for sellers, in less time.

The more you stick with the above criteria the more you’ll be able to measure the performance of your training investment.

When considering what social selling trainer is best for you consider the instructional design. Only invest in training that:

  • includes worksheets that get sellers DO-ing, (not just learning)
  • is directly relevant to current challenges, goals and ambitions of your sellers,
  • focuses on a balance of platform (eg. LinkedIn) and prospecting tactics and

Beware of social selling training promising outcomes other than measurable increases in response to—and appointments with—your reps and dealers. Hire a trainer who measures his/her own success based on sellers taking action. (not merely repeating what they learned)

Place all of your criteria in a short, focused request for proposal (RFP) email. You’ll put this list of requirements to work in the next step.

Cost and Delivery of Training
Overall quality of the trainer, skills the training will develop and delivery of the training. These factors drive cost.

If your team is geographically disbursed an online training will be most cost effective. Are your sellers ambitious do-ers? Will they actually make time for the training? If so, a self-paced, “home study” program may work.

If your sellers will be reluctant to take the training, mandate attendance from your sales leader. Also, choose to deliver training using a live Webinar format. Make the training assignable to a date on their calendar.

Short-List Candidates
Using Google and LinkedIn search, scan the horizon for training candidates. Identify a short-list of potential social selling training trainers.

Use your selection criteria to solicit proposals from trainers. If you don’t wish to mail out a formal RFP, no problem. Use your selection criteria as a guide to identify the most capable vendors.

Review Proposals: The 3 ‘Must Have’ Components
Effective social selling training must result in sellers getting better response from prospects, faster. Make sure training you invest in focuses on a process that creates:

  • attention from a targeted group of potential buyers,
  • engagement that is provocative enough to spark
  • response—conversation that generates a lead or sale.

Choose a social selling trainer that basis his/her training in direct response copywriting that helps get more attention, engagement and appointments.

Assess: Make Sure You Succeed
Make your social selling training relevant and effective. Start with an assessment. Discover your team’s strengths, weaknesses and challenges—right now.

Require your social selling trainer to perform a low-cost assessment to guarantee your success and avoid disaster.

Make sure the assessment:

  • justifies your investment,
  • identifies and sets performance metrics,
  • uncovers current attitudes & experiences with tools like LinkedIn,
  • identifies both resistance to social selling and early adopters.

Identifying early adopters will insure success in the eyes of your boss. By finding reps and dealers eager to sharpen their skills you can focus the training on increasing their success (and reporting back to the boss on it).

You can stack the deck in your favor!

How to Avoid Failure
One of the most common reasons social selling and/or LinkedIn training fails is lack of focus on how to get response. Make sure your training provides more than how-to lessons on managing LinkedIn’s privacy settings and controls.

The primary goal of your training should be earning more appointments by increasing response.

When interviewing final candidates ask them for references who can tell you how their sellers are generating more response after the training.

Do you have more questions about investing in social selling training? Let me know in comments or send me an email. I’ll be glad to help! Or print-off this Social Selling Training Cheat Sheet PDF. (No registration needed)

Cheat Sheet: Is Your Database Marketing Ready?

Many data-related projects end up as big disappointments. And, in many cases, it is because they did not have any design philosophy behind them. Because many folks are more familiar with buildings and cars than geeky databases, allow me to use them as examples here.

Many data-related projects end up as big disappointments. And, in many cases, it is because they did not have any design philosophy behind them. Because many folks are more familiar with buildings and cars than geeky databases, allow me to use them as examples here.

Imagine someone started constructing a building without a clear purpose. What is it going to be? An office building or a residence? If residential, for how many people? For a family, or for 200 college kids? Are they going to just eat and sleep in there, or are they going to engage in other activities in it? What is the budget for development and ongoing maintenance?

If someone starts building a house without answering these basic questions, well, it is safe to say that the guy who commissioned such a project is not in the right state of mind. Then again, he may be a filthy rich rock star with some crazy ideas. But let us just say that is an exceptional case. Nonetheless, surprisingly, a great many database projects start out exactly this way.

Just like a house is not just a sum of bricks, mortar and metal, a database is not just a sum of data, and there has to be design philosophy behind it. And yet, many companies think that putting all available data in one place is just good enough. Call it a movie without a director or a building without an architect; you know and I know that such a project cannot end well.

Even when a professional database designer gets involved, too often the project goes out of control—as the business requirement document ends up being a summary of
everyone’s wish lists, without any prioritization or filtering. It is a case of a movie without a director. The goal becomes something like “a database that stores all conceivable marketing, accounting and payment activities, handling both prospecting and customer relationship management through all conceivable channels, including face-to-face sales and lead management for big accounts. And it should include both domestic and international activities, and the update has to be done in real time.”

Really. Someone in that organization must have attended a database marketing conference recently to get all that listed. It might be simpler and cheaper building a 2-ton truck that flies. But before we commission something like this from the get-go, shall we discuss why the truck has to fly, too? For one, if you want real-time updates, do you have a business case for it? (As in, someone in the field must make real-time decisions with real-time data.) Or do you just fancy a large object, moving really fast?

Companies that primarily sell database tools often do not help the matter, either. Some promise that the tool sets will categorize all kinds of input data, based on some auto-generated meta-tables. (Really?) The tool will clean the data automatically. (Is it a self-cleaning oven?) The tool will establish key links (by what?), build models on its own (with what target data?), deploy campaigns (every Monday?), and conduct result analysis (with responses from all channels?).

All these capabilities sound really wonderful, but does that system set long- and short-term marketing goals for you, too? Does it understand the subtle nuances in human behaviors and intentions?

Sorry for being a skeptic here. But in such cases, I think someone watched “Star Trek” too much. I have never seen a company that does not regret spending seven figures on a tool set that was supposed to do everything. Do you wonder why? It is not because such activities cannot be automated, but because:

  1. Machines do not think for us (not quite yet); and
  2. Such a system is often very expensive, as it needs to cover all contingencies (the opposite of “goal-oriented” cheaper options).

So it becomes nearly impossible to justify the cost with incremental improvements in marketing efficiency. Even if the response rates double, all related marketing costs go down by a quarter, and revenue jumps up by 200 percent, there are not many companies that can easily justify that kind of spending.

Worse yet, imagine that you just paid 10 times more for some factory-made suit than you would have paid for a custom-made Italian suit. Since when is an automated, cookie-cutter answer more desirable than custom-tailored ones? Ever since computing and storage costs started to go down significantly, and more so in this age of Big Data that has an “everything, all the time” mentality.

But let me ask you again: Do you really have a marketing database?

Let us just say that I am a car designer. A potential customer who has been doing a lot of research on the technology front presents me with a spec for a vehicle that is as big as a tractor-trailer and as quick as a passenger car. I guess that someone really needs to move lots of stuff, really fast. Now, let us assume that it will cost about $8 million or more to build a car like that, and that estimate is without the rocket booster (ah, my heart breaks). If my business model is to take a percentage out of that budget, I would say, “Yeah sure, we can build a car like that for you. When can we start?”

But let us stop for a moment and ask why the client would “need” (not “want”) a car like that in the first place. After some user interviews and prioritization, we may collectively conclude that a fleet of full-size vans can satisfy 98 percent of the business needs, saving about $7 million. If that client absolutely and positively has to get to that extra 2 percent to satisfy every possible contingency in his business and spend that money, well, that is his prerogative, is it not? But I have to ask the business questions first before initiating that inevitable long and winding journey without a roadmap.

Knowing exactly what the database is supposed to be doing must be the starting point. Not “let’s just gather everything in one place and hope to God that some user will figure something out eventually.” Also, let’s not forget that constantly adding new goals in any phase of the project will inevitably complicate the matter and increase the cost.

Conversely, repurposing a database designed for some other goal will cause lots of troubles down the line. Yeah, sure. Is it not possible to move 100 people from A to B with a 2-seater sports car, if you are willing to make lots of quick trips and get some speeding tickets along the way? Yes, but that would not be my first recommendation. Instead, here are some real possibilities.

Databases support many different types of activities. So let us name a few:

  • Order fulfillment
  • Inventory management and accounting
  • Contact management for sales
  • Dashboard and report generation
  • Queries and selections
  • Campaign management
  • Response analysis
  • Trend analysis
  • Predictive modeling and scoring
  • Etc., etc.

The list goes on, and some of the databases may be doing fine jobs in many areas already. But can we safely call them “marketing” databases? Or are marketers simply tapping into the central data depository somehow, just making do with lots of blood, sweat and tears?

As an exercise, let me ask a few questions to see if your organization has a functioning marketing database for CRM purposes:

  • What is the average order size per year for customers with tenure of more than one year? —You may have all the transaction data, but maybe not on an individual level in order to know the average.
  • What is the number of active and dormant customers based on the last transaction date? —You will be surprised to find out that many companies do not know exactly how many customers they really have. Beep! 1 million-“ish” is not a good answer.
  • What is the average number of days between activities for each channel for each customer? —With basic transaction data summarized “properly,” this is not a difficult question to answer. But it’s very difficult if there are divisional “channel-centric” databases scattered all over.
  • What is the average number of touches through all channels that you employ before your customer reaches the projected value potential? —This is a hard one. Without all the transaction and contact history by all channels in a “closed-loop” structure, one cannot even begin to formulate an answer for this one. And the “value potential” is a result of statistical modeling, is it not?
  • What are typical gateway products, and how are they correlated to other product purchases? —This may sound like a product question, but without knowing each customer’s purchase history lined up properly with fully standardized product categories, it may take a while to figure this one out.
  • Are basic RFM data—such as dollars, transactions, dates and intervals—routinely being used in predictive models? —The answer is a firm “no,” if the statisticians are spending the majority of their time fixing the data; and “not even close,” if you are still just using RFM data for rudimentary filtering.

Now, if your answer is “Well, with some data summarization and inner/outer joins here and there—though we don’t have all transaction records from last year, and if we can get all the campaign histories from all seven vendors who managed our marketing campaigns, except for emails—maybe?”, then I am sorry to inform you that you do not have a marketing database. Even if you can eventually get to the answer if some programmer takes two weeks to draw a 7-page flow chart.

Often, I get extra comments like “But we have a relational database!” Or, “We stored every transaction for the past 10 years in Hadoop and we can retrieve any one of them in less than a second!” To these comments, I would say “Congratulations, your car has four wheels, right?”

To answer the important marketing questions, the database should be organized in a “buyer-centric” format. Going back to the database philosophy question, the fundamental design of the database changes based on its main purpose, much like the way a sports sedan and an SUV that share the same wheel base and engine end up shaped differently.

Marketing is about people. And, at the center of the marketing database, there have to be people. Every data element in the base should be “describing” those people.

Unfortunately, most relational databases are transaction-, channel- or product-centric, describing events and transactions—but not the people. Unstructured databases that are tuned primarily for massive storage and rapid retrieval may just have pieces of data all over the place, necessitating serious rearrangement to answer some of the most basic business questions.

So, the question still stands. Is your database marketing ready? Because if it is, you would have taken no time to answer my questions listed above and say: “Yeah, I got this. Anything else?”

Now, imagine the difference between marketers who get to the answers with a few clicks vs. the ones who have no clue where to begin, even when sitting on mounds of data. The difference between the two is not the size of the investment, but the design philosophy.

I just hope that you did not buy a sports car when you needed a truck.