Smart Data – Not Big Data

As a concerned data professional, I am already plotting an exit strategy from this Big Data hype. Because like any bubble, it will surely burst. That inevitable doomsday could be a couple of years away, but I can feel it coming. At the risk of sounding too much like Yoda the Jedi Grand Master, all hypes lead to over-investments, all over-investments lead to disappointments, and all disappointments lead to blames. Yes, in a few years, lots of blames will go around, and lots of heads will roll.

As a concerned data professional, I am already plotting an exit strategy from this Big Data hype. Because like any bubble, it will surely burst. That inevitable doomsday could be a couple of years away, but I can feel it coming. At the risk of sounding too much like Yoda the Jedi Grand Master, all hypes lead to over-investments, all over-investments lead to disappointments, and all disappointments lead to blames. Yes, in a few years, lots of blames will go around, and lots of heads will roll.

So, why would I stay on the troubled side? Well, because, for now, this Big Data thing is creating lots of opportunities, too. I am writing this on my way back from Seoul, Korea, where I presented this Big Data idea nine times in just two short weeks, trotting from large venues to small gatherings. Just a few years back, I used to have a hard time explaining what I do for living. Now, I just have to say “Hey, I do this Big Data thing,” and the doors start to open. In my experience, this is the best “Open Sesame” moment for all data specialists. But it will last only if we play it right.

Nonetheless, I also know that I will somehow continue to make living setting data strategies, fixing bad data, designing databases and leading analytical activities, even after the hype cools down. Just with a different title, under a different banner. I’ve seen buzzwords come and go, and this data business has been carried on by the people who cut through each hype (and gargantuan amount of BS along with it) and create real revenue-generating opportunities. At the end of the day (I apologize for using this cliché), it is all about the bottom line, whether it comes from a revenue increase or cost reduction. It is never about the buzzwords that may have created the business opportunities in the first place; it has always been more about the substance that turned those opportunities into money-making machines. And substance needs no fancy title or buzzwords attached to it.

Have you heard Google or Amazon calling themselves a “Big Data” companies? They are the ones with sick amounts of data, but they also know that it is not about the sheer amount of data, but it is all about the user experience. “Wannabes” who are not able to understand the core values often hang onto buzzwords and hypes. As if Big Data, Cloud Computing or coding language du jour will come and save the day. But they are just words.

Even the name “Big Data” is all wrong, as it implies that bigger is always better. The 3 Vs of Big Data—volume, velocity and variety—are also misleading. That could be a meaningful distinction for existing data players, but for decision-makers, it gives a notion that size and speed are the ultimate quest. But for the users, small is better. They don’t have time to analyze big sets of data. They need small answers in fun size packages. Plus, why is big and fast new? Since the invention of modern computers, has there been any year when the processing speed did not get faster and storage capacity did not get bigger?

Lest we forget, it is the software industry that came up with this Big Data thing. It was created as a marketing tagline. We should have read it as, “Yes, we can now process really large amounts of data, too,” not as, “Big Data will make all your dreams come true.” If you are in the business of selling toolsets, of course, that is how you present your product. If guitar companies keep emphasizing how hard it is to be a decent guitar player, would that help their businesses? It is a lot more effective to say, “Hey, this is the same guitar that your guitar hero plays!” But you don’t become Jeff Beck just because you bought a white Fender Stratocaster with a rosewood neck. The real hard work begins “after” you purchase a decent guitar. However, this obvious connection is often lost in the data business. Toolsets never provide solutions on their own. They may make your life easier, but you’d still have to formulate the question in a logical fashion, and still have to make decisions based on provided data. And harnessing meanings out of mounds of data requires training of your mind, much like the way musicians practice incessantly.

So, before business people even consider venturing into this Big Data hype, they should ask themselves “Why data?” What are burning questions that you are trying to solve with the data? If you can’t answer this simple question, then don’t jump into it. Forget about it. Don’t get into it just because everyone else seems to be getting into it. Yeah, it’s a big party, but why are you going there? Besides, if you formulate the question properly, often you will find that you don’t need Big Data all the time. If fact, Big Data can be a terrible detour if your question can be answered by “small” data. But that happens all the time, because people approach their business questions through the processes set by the toolsets. Big Data should be about the business, not about the IT or data.

Smart Data, Not Big Data
So, how do we get over this hype? All too often, perception rules, and a replacement word becomes necessary to summarize the essence of the concept for the general public. In my opinion, “Big Data” should have been “Smart Data.” Piles of unorganized dumb data aren’t worth a damn thing. Imagine a warehouse full of boxes with no labels, collecting dust since 1943. Would you be impressed with the sheer size of the warehouse? Great, the ark that Indiana Jones procured (or did he?) may be stored in there somewhere. But if no one knows where it is—or even if it can be located, if no one knows what to do with it—who cares?

Then, how do data get smarter? Smart data are bite-sized answers to questions. A thousand variables could have been considered to provide the weather forecast that calls for a “70 percent chance of scattered showers in the afternoon,” but that one line that we hear is the smart piece of data. Not the list of all the variables that went into the formula that created that answer. Emphasizing the raw data would be like giving paints and brushes to a person who wants a picture on the wall. As in, “Hey, here are all the ingredients, so why don’t you paint the picture and hang it on the wall?” Unfortunately, that is how the Big Data movement looks now. And too often, even the ingredients aren’t all that great.

I visit many companies only to find that the databases in question are just messy piles of unorganized and unstructured data. And please do not assume that such disarrays are good for my business. I’d rather spend my time harnessing meanings out of data and creating values, not taking care of someone else’s mess all the time. Really smart data are small, concise, clean and organized. Big Data should only be seen in “Behind the Scenes” types of documentaries for manias, not for everyday decision-makers.

I have been already saying that Big Data must get smaller for some time (refer to “Big Data Must Get Smaller“) and I would repeat it until it becomes a movement on its own. The Big Data movement must be about:

  1. Cutting down the noise
  2. Providing the answers

There is too much noise in the data, and cutting it out is the first step toward making the data smaller and smarter. The trouble is that the definition of “noise” is not static. Rock music that I grew up with was certainly a noise to my parents’ generation. In turn, some music that my kids listen to is pure noise to me. Likewise, “product color,” which is essential for a database designed for an inventory management system, may or may not be noise if the goal is to sell more apparel items. In such cases, more important variables could be style, brand, price range, target gender, etc., but color could be just peripheral information at best, or even noise (as in, “Uh, she isn’t going to buy just red shoes all the time?”). How do we then determine the differences? First, set the clear goals (as in, “Why are we playing with the data to begin with?”), define the goals using logical expressions, and let mathematics take care of it. Now you can drop the noise with conviction (even if it may look important to human minds).

If we continue with that mathematical path, we would reach the second part, which is “providing answers to the question.” And the smart answers are in the forms of yes/no, probability figures or some type of scores. Like in the weather forecast example, the question would be “chance of rain on a certain day” and the answer would be “70 percent.” Statistical modeling is not easy or simple, but it is the essential part of making the data smarter, as models are the most effective way to summarize complex and abundant data into compact forms (refer to “Why Model?”).

Most people do not have degrees in mathematics or statistics, but they all know what to do with a piece of information such as “70 percent chance of rain” on the day of a company outing. Some may complain that it is not a definite yes/no answer, but all would agree that providing information in this form is more humane than dumping all the raw data onto users. Sales folks are not necessarily mathematicians, but they would certainly appreciate scores attached to each lead, as in “more or less likely to close.” No, that is not a definite answer, but now sales people can start calling the leads in the order of relative importance to them.

So, all the Big Data players and data scientists must try to “humanize” the data, instead of bragging about the size of the data, making things more complex, and providing irrelevant pieces of raw data to users. Make things simpler, not more complex. Some may think that complexity is their job security, but I strongly disagree. That is a sure way to bring down this Big Data movement to the ground. We are already living in a complex world, and we certainly do not need more complications around us (more on “How to be a good data scientist” in a future article).

It’s About the Users, Too
On the flip side, the decision-makers must change their attitude about the data, as well.

1. Define the goals first: The main theme of this series has been that the Big Data movement is about the business, not IT or data. But I’ve seen too many business folks who would so willingly take a hands-off approach to data. They just fund the database; do not define clear business goals to developers; and hope to God that someday, somehow, some genius will show up and clear up the mess for them. Guess what? That cavalry is never coming if you are not even praying properly. If you do not know what problems you want to solve with data, don’t even get started; you will get to nowhere really slowly, bleeding lots of money and time along the way.

2. Take the data seriously: You don’t have to be a scientist to have a scientific mind. It is not ideal if someone blindly subscribes anything computers spew out (there are lots of inaccurate information in databases; refer to “Not All Databases Are Created Equal.”). But too many people do not take data seriously and continue to follow their gut feelings. Even if your customer profile coming out of a serious analysis does not match with your preconceived notions, do not blindly reject it; instead, treat it as a newly found gold mine. Gut feelings are even more overrated than Big Data.

3. Be logical: Illogical questions do not lead anywhere. There is no toolset that reads minds—at least not yet. Even if we get to have such amazing computers—as seen on “Star Trek” or in other science fiction movies—you would still have to ask questions in a logical fashion for them to be effective. I am not asking decision-makers to learn how to code (or be like Mr. Spock or his loyal follower, Dr. Sheldon Cooper), but to have some basic understanding of logical expressions and try to learn how analysts communicate with computers. This is not data geek vs. non-geek world anymore; we all have to be a little geekier. Knowing Boolean expressions may not be as cool as being able to throw a curve ball, but it is necessary to survive in the age of information overload.

4. Shoot for small successes: Start with a small proof of concept before fully investing in large data initiatives. Even with a small project, one gets to touch all necessary steps to finish the job. Understanding the flow of information is as important as each specific step, as most breakdowns occur in between steps, due to lack of proper connections. There was Gemini program before Apollo missions. Learn how to dock spaceships in space before plotting the chart to the moon. Often, over-investments are committed when the discussion is led by IT. Outsource even major components in the beginning, as the initial goal should be mastering the flow of things.

5. Be buyer-centric: No customer is bound by the channel of the marketer’s choice, and yet, may businesses act exactly that way. No one is an online person just because she did not refuse your email promotions yet (refer to “The Future of Online is Offline“). No buyer is just one dimensional. So get out of brand-, division-, product- or channel-centric mindsets. Even well-designed, buyer-centric marketing databases become ineffective if users are trapped in their channel- or division-centric attitudes, as in “These email promotions must flow!” or “I own this product line!” The more data we collect, the more chances marketers will gain to impress their customers and prospects. Do not waste those opportunities by imposing your own myopic views on them. Big Data movement is not there to fortify marketers’ bad habits. Thanks to the size of the data and speed of machines, we are now capable of disappointing a lot of people really fast.

What Did This Hype Change?
So, what did this Big Data hype change? First off, it changed people’s attitudes about the data. Some are no longer afraid of large amounts of information being thrown at them, and some actually started using them in their decision-making processes. Many realized that we are surrounded by numbers everywhere, not just in marketing, but also in politics, media, national security, health care and the criminal justice system.

Conversely, some people became more afraid—often with good reasons. But even more often, people react based on pure fear that their personal information is being actively exploited without their consent. While data geeks are rejoicing in the age of open source and cloud computing, many more are looking at this hype with deep suspicions, and they boldly reject storing any personal data in those obscure “clouds.” There are some people who don’t even sign up for EZ Pass and voluntarily stay on the long lane to pay tolls in the old, but untraceable way.

Nevertheless, not all is lost in this hype. The data got really big, and types of data that were previously unavailable, such as mobile and social data, became available to many marketers. Focus groups are now the size of Twitter followers of the company or a subject matter. The collection rate of POS (point of service) data has been increasingly steady, and some data players became virtuosi in using such fresh and abundant data to impress their customers (though some crossed that “creepy” line inadvertently). Different types of data are being used together now, and such merging activities will compound the predictive power even further. Analysts are dealing with less missing data, though no dataset would ever be totally complete. Developers in open source environments are now able to move really fast with new toolsets that would just run on any device. Simply, things that our forefathers of direct marketing used to take six months to complete can be done in few hours, and in the near future, maybe within a few seconds.

And that may be a good thing and a bad thing. If we do this right, without creating too many angry consumers and without burning holes in our budgets, we are currently in a position to achieve great many things in terms of predicting the future and making everyone’s lives a little more convenient. If we screw it up badly, we will end up creating lots of angry customers by abusing sensitive data and, at the same time, wasting a whole lot of investors’ money. Then this Big Data thing will go down in history as a great money-eating hype.

We should never do things just because we can; data is a powerful tool that can hurt real people. Do not even get into it if you don’t have a clear goal in terms of what to do with the data; it is not some piece of furniture that you buy just because your neighbor bought it. Living with data is a lifestyle change, and it requires a long-term commitment; it is not some fad that you try once and give up. It is a continuous loop where people’s responses to marketer’s data-based activities create even more data to be analyzed. And that is the only way it keeps getting better.

There Is No Big Data
And all that has nothing to do with “Big.” If done right, small data can do plenty. And in fact, most companies’ transaction data for the past few years would easily fit in an iPhone. It is about what to do with the data, and that goal must be set from a business point of view. This is not just a new playground for data geeks, who may care more for new hip technologies that sound cool in their little circle.

I recently went to Brazil to speak at a data conference called QIBRAS, and I was pleasantly surprised that the main theme of it was the quality of the data, not the size of the data. Well, at least somewhere in the world, people are approaching this whole thing without the “Big” hype. And if you look around, you will not find any successful data players calling this thing “Big Data.” They just deal with small and large data as part of their businesses. There is no buzzword, fanfare or a big banner there. Because when something is just part of your everyday business, you don’t even care what you call it. You just do. And to those masters of data, there is no Big Data. If Google all of a sudden starts calling itself a Big Data company, it would be so uncool, as that word would seriously limit it. Think about that.

Big Data Must Get Smaller

Like many folks who worked in the data business for a long time, I don’t even like the words “Big Data.” Yeah, data is big now, I get it. But so what? Faster and bigger have been the theme in the computing business since the first calculator was invented. In fact, I don’t appreciate the common definition of Big Data that is often expressed in the three Vs: volume, velocity and variety. So, if any kind of data are big and fast, it’s all good? I don’t think so. If you have lots of “dumb” data all over the place, how does that help you? Well, as much as all the clutter that’s been piled on in your basement since 1971. It may yield some profit on an online auction site one day. Who knows? Maybe some collector will pay good money for some obscure Coltrane or Moody Blues albums that you never even touched since your last turntable (Ooh, what is that?) died on you. Those oversized album jackets were really cool though, weren’t they?

Like many folks who worked in the data business for a long time, I don’t even like the words “Big Data.” Yeah, data is big now, I get it. But so what? Faster and bigger have been the theme in the computing business since the first calculator was invented. In fact, I don’t appreciate the common definition of Big Data that is often expressed in the three Vs: volume, velocity and variety. So, if any kind of data are big and fast, it’s all good? I don’t think so. If you have lots of “dumb” data all over the place, how does that help you? Well, as much as all the clutter that’s been piled on in your basement since 1971. It may yield some profit on an online auction site one day. Who knows? Maybe some collector will pay good money for some obscure Coltrane or Moody Blues albums that you never even touched since your last turntable (Ooh, what is that?) died on you. Those oversized album jackets were really cool though, weren’t they?

Seriously, the word “Big” only emphasizes the size element, and that is a sure way to miss the essence of the data business. And many folks are missing even that little point by calling all decision-making activities that involve even small-sized data “Big Data.” It is entirely possible that this data stuff seems all new to someone, but the data-based decision-making process has been with us for a very long time. If you use that “B” word to differentiate old-fashioned data analytics of yesteryear and ridiculously large datasets of the present day, yes, that is a proper usage of it. But we all know most people do not mean it that way. One side benefit of this bloated and hyped up buzzword is data professionals like myself do not have to explain what we do for living for 20 minutes anymore by simply uttering the word “Big Data,” though that is a lot like a grandmother declaring all her grandchildren work on computers for living. Better yet, that magic “B” word sometimes opens doors to new business opportunities (or at least a chance to grab a microphone in non-data-related meetings and conferences) that data geeks of the past never dreamed of.

So, I guess it is not all that bad. But lest we forget, all hypes lead to overinvestments, and all overinvestments leads to disappointments, and all disappointments lead to purging of related personnel and vendors that bear that hyped-up dirty word in their titles or division names. If this Big Data stuff does not yield significant profit (or reduction in cost), I am certain that those investment bubbles will burst soon enough. Yes, some data folks may be lucky enough to milk it for another two or three years, but brace for impact if all those collected data do not lead to some serious dollar signs. I know how the storage and processing cost decreased significantly in recent years, but they ain’t totally free, and related man-hours aren’t exactly cheap, either. Also, if this whole data business is a new concept to an organization, any money spent on the promise of Big Data easily becomes a liability for the reluctant bunch.

This is why I open up my speeches and lectures with this question: “Have you made any money with this Big Data stuff yet?” Surely, you didn’t spend all that money to provide faster toys and nicer playgrounds to IT folks? Maybe the head of IT had some fun with it, but let’s ask that question to CFOs, not CTOs, CIOs or CDOs. I know some colleagues (i.e., fellow data geeks) who are already thinking about a new name for this—”decision-making activities, based on data and analytics”—because many of us will be still doing that “data stuff” even after Big Data cease to be cool after the judgment day. Yeah, that Gangnam Style dance was fun for a while, but who still jumps around like a horse?

Now, if you ask me (though nobody did yet), I’d say the Big Data should have been “Smart Data,” “Intelligent Data” or something to that extent. Because data must provide insights. Answers to questions. Guidance to decision-makers. To data professionals, piles of data—especially the ones that are fragmented, unstructured and unformatted, no matter what kind of fancy names the operating system and underlying database technology may bear—it is just a good start. For non-data-professionals, unrefined data—whether they are big or small—would remain distant and obscure. Offering mounds of raw data to end-users is like providing a painting kit when someone wants a picture on the wall. Bragging about the size of the data with impressive sounding new measurements that end with “bytes” is like counting grains of rice in California in front of a hungry man.

Big Data must get smaller. People want yes/no answers to their specific questions. If such clarity is not possible, probability figures to such questions should be provided; as in, “There’s an 80 percent chance of thunderstorms on the day of the company golf outing,” “An above-average chance to close a deal with a certain prospect” or “Potential value of a customer who is repeatedly complaining about something on the phone.” It is about easy-to-understand answers to business questions, not a quintillion bytes of data stored in some obscure cloud somewhere. As I stated at the end of my last column, the Big Data movement should be about (1) Getting rid of the noise, and (2) Providing simple answers to decision-makers. And getting to such answers is indeed the process of making data smaller and smaller.

In my past columns, I talked about the benefits of statistical models in the age of Big Data, as they are the best way to compact big and complex information in forms of simple answers (refer to “Why Model?”). Models built to predict (or point out) who is more likely to be into outdoor sports, to be a risk-averse investor, to go on a cruise vacation, to be a member of discount club, to buy children’s products, to be a bigtime donor or to be a NASCAR fan, are all providing specific answers to specific questions, while each model score is a result of serious reduction of information, often compressing thousands of variables into one answer. That simplification process in itself provides incredible value to decision-makers, as most wouldn’t know where to cut out unnecessary information to answer specific questions. Using mathematical techniques, we can cut down the noise with conviction.

In model development, “Variable Reduction” is the first major step after the target variable is determined (refer to “The Art of Targeting“). It is often the most rigorous and laborious exercise in the whole model development process, where the characteristics of models are often determined as each statistician has his or her unique approach to it. Now, I am not about to initiate a debate about the best statistical method for variable reduction (I haven’t met two statisticians who completely agree with each other in terms of methodologies), but I happened to know that many effective statistical analysts separate variables in terms of data types and treat them differently. In other words, not all data variables are created equal. So, what are the major types of data that database designers and decision-makers (i.e., non-mathematical types) should be aware of?

In the business of predictive analytics for marketing, the following three types of data make up three dimensions of a target individual’s portrait:

  1. Descriptive Data
  2. Transaction Data / Behavioral Data
  3. Attitudinal Data

In other words, if we get to know all three aspects of a person, it will be much easier to predict what the person is about and/or what the person will do. Why do we need these three dimensions? If an individual has a high income and is living in a highly valued home (demographic element, which is descriptive); and if he is an avid golfer (behavioral element often derived from his purchase history), can we just assume that he is politically conservative (attitudinal element)? Well, not really, and not all the time. Sometimes we have to stop and ask what the person’s attitude and outlook on life is all about. Now, because it is not practical to ask everyone in the country about every subject, we often build models to predict the attitudinal aspect with available data. If you got a phone call from a political party that “assumes” your political stance, that incident was probably not random or accidental. Like I emphasized many times, analytics is about making the best of what is available, as there is no such thing as a complete dataset, even in this age of ubiquitous data. Nonetheless, these three dimensions of the data spectrum occupy a unique and distinct place in the business of predictive analytics.

So, in the interest of obtaining, maintaining and utilizing all possible types of data—or, conversely, reducing the size of data with conviction by knowing what to ignore, let us dig a little deeper:

Descriptive Data
Generally, demographic data—such as people’s income, age, number of children, housing size, dwelling type, occupation, etc.—fall under this category. For B-to-B applications, “Firmographic” data—such as number of employees, sales volume, year started, industry type, etc.—would be considered as descriptive data. It is about what the targets “look like” and, generally, they are frozen in the present time. Many prominent data compilers (or data brokers, as the U.S. government calls them) collect, compile and refine the data and make hundreds of variables available to users in various industry sectors. They also fill in the blanks using predictive modeling techniques. In other words, the compilers may not know the income range of every household, but using statistical techniques and other available data—such as age, home ownership, housing value, and many other variables—they provide their best estimates in case of missing values. People often have some allergic reaction to such data compilation practices siting privacy concerns, but these types of data are not about looking up one person at a time, but about analyzing and targeting groups (or segments) of individuals and households. In terms of predictive power, they are quite effective and results are very consistent. The best part is that most of the variables are available for every household in the country, whether they are actual or inferred.

Other types of descriptive data include geo-demographic data, and the Census Data by the U.S. Census Bureau falls under this category. These datasets are organized by geographic denominations such as Census Block Group, Census Tract, Country or ZIP Code Tabulation Area (ZCTA, much like postal ZIP codes, but not exactly the same). Although they are not available on an individual or a household level, the Census data are very useful in predictive modeling, as every target record can be enhanced with it, even when name and address are not available, and data themselves are very stable. The downside is that while the datasets are free through Census Bureau, the raw datasets contain more than 40,000 variables. Plus, due to the budget cut and changes in survey methods during the past decade, the sample size (yes, they sample) decreased significantly, rendering some variables useless at lower geographic denominations, such as Census Block Group. There are professional data companies that narrowed down the list of variables to manageable sizes (300 to 400 variables) and filled in the missing values. Because they are geo-level data, variables are in the forms of percentages, averages or median values of elements, such as gender, race, age, language, occupation, education level, real estate value, etc. (as in, percent male, percent Asian, percent white-collar professionals, average income, median school years, median rent, etc.).

There are many instances where marketers cannot pinpoint the identity of a person due to privacy issues or challenges in data collection, and the Census Data play a role of effective substitute for individual- or household-level demographic data. In predictive analytics, duller variables that are available nearly all the time are often more valuable than precise information with limited availability.

Transaction Data/Behavioral Data
While descriptive data are about what the targets look like, behavioral data are about what they actually did. Often, behavioral data are in forms of transactions. So many just call it transaction data. What marketers commonly refer to as RFM (Recency, Frequency and Monetary) data fall under this category. In terms of predicting power, they are truly at the top of the food chain. Yes, we can build models to guess who potential golfers are with demographic data, such as age, gender, income, occupation, housing value and other neighborhood-level information, but if you get to “know” that someone is a buyer of a box of golf balls every six weeks or so, why guess? Further, models built with transaction data can even predict the nature of future purchases, in terms of monetary value and frequency intervals. Unfortunately, many who have access to RFM data are using them only in rudimentary filtering, as in “select everyone who spends more than $200 in a gift category during the past 12 months,” or something like that. But we can do so much more with rich transaction data in every stage of the marketing life cycle for prospecting, cultivating, retaining and winning back.

Other types of behavioral data include non-transaction data, such as click data, page views, abandoned shopping baskets or movement data. This type of behavioral data is getting a lot of attention as it is truly “big.” The data have been out of reach for many decision-makers before the emergence of new technology to capture and store them. In terms of predictability, nevertheless, they are not as powerful as real transaction data. These non-transaction data may provide directional guidance, as they are what some data geeks call “a-camera-on-everyone’s-shoulder” type of data. But we all know that there is a clear dividing line between people’s intentions and their commitments. And it can be very costly to follow every breath you take, every move you make, and every step you take. Due to their distinct characteristics, transaction data and non-transaction data must be managed separately. And if used together in models, they should be clearly labeled, so the analysts will never treat them the same way by accident. You really don’t want to mix intentions and commitments.

The trouble with the behavioral data are, (1) they are difficult to compile and manage, (2) they get big; sometimes really big, (3) they are generally confined within divisions or companies, and (4) they are not easy to analyze. In fact, most of the examples that I used in this series are about the transaction data. Now, No. 3 here could be really troublesome, as it equates to availability (or lack thereof). Yes, you may know everything that happened with your customers, but do you know where else they are shopping? Fortunately, there are co-op companies that can answer that question, as they are compilers of transaction data across multiple merchants and sources. And combined data can be exponentially more powerful than data in silos. Now, because transaction data are not always available for every person in databases, analysts often combine behavioral data and descriptive data in their models. Transaction data usually become the dominant predictors in such cases, while descriptive data play the supporting roles filling in the gaps and smoothing out the predictive curves.

As I stated repeatedly, predictive analytics in marketing is all about finding out (1) whom to engage, and (2) if you decided to engage someone, what to offer to that person. Using carefully collected transaction data for most of their customers, there are supermarket chains that achieved 100 percent customization rates for their coupon books. That means no two coupon books are exactly the same, which is a quite impressive accomplishment. And that is all transaction data in action, and it is a great example of “Big Data” (or rather, “Smart Data”).

Attitudinal Data
In the past, attitudinal data came from surveys, primary researches and focus groups. Now, basically all social media channels function as gigantic focus groups. Through virtual places, such as Facebook, Twitter or other social media networks, people are freely volunteering what they think and feel about certain products and services, and many marketers are learning how to “listen” to them. Sentiment analysis falls under that category of analytics, and many automatically think of this type of analytics when they hear “Big Data.”

The trouble with social data is:

  1. We often do not know who’s behind the statements in question, and
  2. They are in silos, and it is not easy to combine such data with transaction or demographic data, due to lack of identity of their sources.

Yes, we can see that a certain political candidate is trending high after an impressive speech, but how would we connect that piece of information to whom will actually donate money for the candidate’s causes? If we can find out “where” the target is via an IP address and related ZIP codes, we may be able to connect the voter to geo-demographic data, such as the Census. But, generally, personally identifiable information (PII) is only accessible by the data compilers, if they even bothered to collect them.

Therefore, most such studies are on a macro level, citing trends and directions, and types of analysts in that field are quite different from the micro-level analysts who deal with behavioral data and descriptive data. Now, the former provide important insights regarding the “why” part of the equation, which is often the hardest thing to predict; while the latter provide answers to “who, what, where and when.” (“Who” is the easiest to answer, and “when” is the hardest.) That “why” part may dictate a product development part of the decision-making process at the conceptual stage (as in, “Why would customers care for a new type of dishwasher?”), while “who, what, where and when” are more about selling the developed products (as in “Let’s sell those dishwashers in the most effective ways.”). So, it can be argued that these different types of data call for different types of analytics for different cycles in the decision-making processes.

Obviously, there are more types of data out there. But for marketing applications dealing with humans, these three types of data complete the buyers’ portraits. Now, depending on what marketers are trying to do with the data, they can prioritize where to invest first and what to ignore (for now). If they are early in the marketing cycle trying to develop a new product for the future, they need to understand why people want something and behave in certain ways. If signing up as many new customers as possible is the immediate goal, finding out who and where the ideal prospects are becomes the most imminent task. If maximizing the customer value is the ongoing objective, then you’d better start analyzing transaction data more seriously. If preventing attrition is the goal, then you will have to line up the transaction data in time series format for further analysis.

The business goals must dictate the analytics, and the analytics call for specific types of data to meet the goals, and the supporting datasets should be in “analytics-ready” formats. Not the other way around, where businesses are dictated by the limitations of analytics, and analytics are hampered by inadequate data clutters. That type of business-oriented hierarchy should be the main theme of effective data management, and with clear goals and proper data strategy, you will know where to invest first and what data to ignore as a decision-maker, not necessarily as a mathematical analyst. And that is the first step toward making the Big Data smaller. Don’t be impressed by the size of the data, as they often blur the big picture and not all data are created equal.

Why Can’t I Mail It? – Booklets

As you know from Part One of “Why Can’t I Mail It?” with postcards and Part Two with self-mailers, there are many times that a design element causes a mailing to go at a higher rate of postage. This can be frustrating as well as expensive. In order to help you stay away from potential issues, here are some things to keep in mind as you are preparing a direct mail campaign. Now let’s look at Booklets:

As you know from Part One of “Why Can’t I Mail It?” with postcards and Part Two with self-mailers, there are many times that a design element causes a mailing to go at a higher rate of postage. This can be frustrating as well as expensive. In order to help you stay away from potential issues, here are some things to keep in mind as you are preparing a direct mail campaign.

Now let’s look at Booklets:

  1. Booklet sizes are between 3.5 x 5 to 6 x 10.5. A booklet consists of multiple sheets or pages that are bound by saddle‐stitching, perfect binding, pressed glue or other binding method that creates a nearly uniformly thick mail piece. You also have the option of creating a top flap to fold over onto the opposite side of the mail panel so you can seal it with fugitive glue instead of tab.
    This category way created in 2009 and was driven by the USPS to curb the marketing industries use of smaller catalogs since flat-size catalogs were so much more expensive.
  2. Paper stock must be a minimum weight for the cover of between 40lb to 80lb book depending on the design.
    The USPS found that thinner stock on the covers tore off, and then they were not deliverable because the address is on the cover.
  3. Keep your aspect ratio between 1.3 and 2.5. In order to calculate the aspect ratio, you start by looking at the mail panel, then take the length of the booklet and divide it by the height.
    The USPS says that when pieces are too narrow the machines cannot feed them.
  4. There are two options for addressing a Booklet.
    Barcode in the address block
    : 4×2 clear area, no varnish, UV coating, text, or images for the address block. The block needs to be a minimum 0.5 inches from the right edge and 0.625 inches from bottom edge. The block can be no higher from the bottom of the mailer than 3.5 inches. Lastly, the address must remain at a minimum distance from graphics or text of 0.125 inches.
    Barcode clear zone addressing
    : The barcode clear zone is the bottom 5/8 of the postcard and must be free of all color, text and images. Next the address block must be a minimum 0.5 inches from the right edge and minimum of 0.625 inches from bottom edge. The block can be no higher from the bottom of the mailer than 3.5 inches. Lastly, the address must remain at a minimum distance from graphics or text of 0.125 inches.
    As you know from part one and two, these requirements are meant to keep the address in the OCR (Optical Character Reader) read area of the postal equipment. Honestly, the current equipment has more read area than this, but getting the post office to change rules is like pulling teeth!
  5. Binding requirements allow for two locations on the binding. You may either bind to the right of the mail panel or to the left of the mail panel. This is so that the machines feed the booklets with the least amount of jamming.
  6. Tabbing or Fugitive Glue:
    3 tabs are required
    with a minimum 1 ½ inch diameter and they may not be perforated. If binding is below mail panel, then two tabs are required to the right of the mail panel and 1 tab to the left. If the binding is to the right of the mail panel, then two tabs are required above the mail panel and one tab to the left.
    These are very large tabs—they need to be to hold the booklets closed—but be aware of the size when designing so they do not distract from your overall message.

    For Fugitive glue:
    Continuous glue line along flap or 1-inch glue spots within ¾ inch of right and left edges.
    The fugitive glue on the flap does look much nicer and is easier to open.
  7. Poly bag/envelope: If you use a poly bag or envelope, your mail will have to go at flat postage rates. You cannot use them with booklet letter size mail.
    The USPS tells us that they will not feed through the machines. So, we will have to use them only for flat size mail.

Your best bet is to design your booklet and then send a pdf to your direct mail provider, to have them find any problems with the design. They can help to make sure you are automation-compliant and save on postage.

As you are going through the process, do not let it stop your creativity. It is the unique and creative pieces that get recipients’ attention and increase your ROI. Do not let these regulations limit your design. There are plenty of ways to create self-mailers that standout and get attention! Contact your mail provider for samples and suggestions.

It’s All About Ranking

The decision-making process is really all about ranking. As a marketer, to whom should you be talking first? What product should you offer through what channel? As a businessperson, whom should you hire among all the candidates? As an investor, what stocks or bonds should you purchase? As a vacationer, where should you visit first?

The decision-making process is really all about ranking. As a marketer, to whom should you be talking first? What product should you offer through what channel? As a businessperson, whom should you hire among all the candidates? As an investor, what stocks or bonds should you purchase? As a vacationer, where should you visit first?

Yes, “choice” is the keyword in all of these questions. And if you picked Paris over other places as an answer to the last question, you just made a choice based on some ranking order in your mind. The world is big, and there could have been many factors that contributed to that decision, such as culture, art, cuisine, attractions, weather, hotels, airlines, prices, deals, distance, convenience, language, etc., and I am pretty sure that not all factors carried the same weight for you. For example, if you put more weight on “cuisine,” I can see why London would lose a few points to Paris in that ranking order.

As a citizen, for whom should I vote? That’s the choice based on your ranking among candidates, too. Call me overly analytical (and I am), but I see the difference in political stances as differences in “weights” for many political (and sometimes not-so-political) factors, such as economy, foreign policy, defense, education, tax policy, entitlement programs, environmental issues, social issues, religious views, local policies, etc. Every voter puts different weights on these factors, and the sum of them becomes the score for each candidate in their minds. No one thinks that education is not important, but among all these factors, how much weight should it receive? Well, that is different for everybody; hence, the political differences.

I didn’t bring this up to start a political debate, but rather to point out that the decision-making process is based on ranking, and the ranking scores are made of many factors with different weights. And that is how the statistical models are designed in a nutshell (so, that means the models are “nuts”?). Analysts call those factors “independent variables,” which describe the target.

In my past columns, I talked about the importance of statistical models in the age of Big Data (refer to “Why Model?”), and why marketing databases must be “model-ready” (refer to “Chicken or the Egg? Data or Analytics?”). Now let’s dig a little deeper into the design of the “model-ready” marketing databases. And surprise! That is also all about “ranking.”

Let’s step back into the marketing world, where folks are not easily offended by the subject matter. If I give a spreadsheet that contains thousands of leads for your business, you wouldn’t be able to tell easily which ones are the “Glengarry Glen Ross” leads that came from Downtown, along with those infamous steak knives. What choice would you have then? Call everyone on the list? I guess you can start picking names out of a hat. If you think a little more about it, you may filter the list by the first name, as they may reflect the decade in which they were born. Or start calling folks who live in towns that sound affluent. Heck, you can start calling them in alphabetical order, but the point is that you would “sort” the list somehow.

Now, if the list came with some other valuable information, such as income, age, gender, education level, socio-economic status, housing type, number of children, etc., you may be able to pick and choose by which variables you would use to sort the list. You may start calling the high income folks first. Not all product sales are positively related to income, but it is an easy way to start the process. Then, you would throw in other variables to break the ties in rich areas. I don’t know what you’re selling, but maybe, you would want folks who live in a single-family house with kids. And sometimes, your “gut” feeling may lead you to the right place. But only sometimes. And only when the size of the list is not in millions.

If the list was not for prospecting calls, but for a CRM application where you also need to analyze past transaction and interaction history, the list of the factors (or variables) that you need to consider would be literally nauseating. Imagine the list contains all kinds of dollars, dates, products, channels and other related numbers and figures in a seemingly endless series of columns. You’d have to scroll to the right for quite some time just to see what’s included in the chart.

In situations like that, how nice would it be if some analyst threw in just two model scores for responsiveness to your product and the potential value of each customer, for example? The analysts may have considered hundreds (or thousands) of variables to derive such scores for you, and all you need to know is that the higher the score, the more likely the lead will be responsive or have higher potential values. For your convenience, the analyst may have converted all those numbers with many decimal places into easy to understand 1-10 or 1-20 scales. That would be nice, wouldn’t it be? Now you can just start calling the folks in the model group No. 1.

But let me throw in a curveball here. Let’s go back to the list with all those transaction data attached, but without the model scores. You may say, “Hey, that’s OK, because I’ve been doing alright without any help from a statistician so far, and I’ll just use the past dollar amount as their primary value and sort the list by it.” And that is a fine plan, in many cases. Then, when you look deeper into the list, you find out there are multiple entries for the same name all over the place. How can you sort the list of leads if the list is not even on an individual level? Welcome to the world of relational databases, where every transaction deserves an entry in a table.

Relational databases are optimized to store every transaction and retrieve them efficiently. In a relational database, tables are connected by match keys, and many times, tables are connected in what we call “1-to-many” relationships. Imagine a shopping basket. There is a buyer, and we need to record the buyer’s ID number, name, address, account number, status, etc. Each buyer may have multiple transactions, and for each transaction, we now have to record the date, dollar amount, payment method, etc. Further, if the buyer put multiple items in a shopping basket, that transaction, in turn, is in yet another 1-to-many relationship to the item table. You see, in order to record everything that just happened, this relational structure is very useful. If you are the person who has to create the shipping package, yes, you need to know all the item details, transaction value and the buyer’s information, including the shipping and billing address. Database designers love this completeness so much, they even call this structure the “normal” state.

But the trouble with the relational structure is that each line is describing transactions or items, not the buyers. Sure, one can “filter” people out by interrogating every line in the transaction table, say “Select buyers who had any transaction over $100 in past 12 months.” That is what I call rudimentary filtering, but once we start asking complex questions such as, “What is the buyer’s average transaction amount for past 12 months in the outdoor sports category, and what is the overall future value of the customers through online channels?” then you will need what we call “Buyer-centric” portraits, not transaction or item-centric records. Better yet, if I ask you to rank every customer in the order of such future value, well, good luck doing that when all the tables are describing transactions, not people. That would be exactly like the case where you have multiple lines for one individual when you need to sort the leads from high value to low.

So, how do we remedy this? We need to summarize the database on an individual level, if you would like to sort the leads on an individual level. If the goal is to rank households, email addresses, companies, business sites or products, then the summarization should be done on those levels, too. Now, database designers call it the “de-normalization” process, and the tables tend to get “wide” along that process, but that is the necessary step in order to rank the entities properly.

Now, the starting point in all the summarizations is proper identification numbers for those levels. It won’t be possible to summarize any table on a household level without a reliable household ID. One may think that such things are given, but I would have to disagree. I’ve seen so many so-called “state of the art” (another cliché that makes me nauseous) databases that do not have consistent IDs of any kind. If your database managers say they are using “plain name” or “email address” fields for matching or summarization, be afraid. Be very afraid. As a starter, you know how many email addresses one person may have. To add to that, consider how many people move around each year.

Things get worse in regard to ranking by model scores when it comes to “unstructured” databases. We see more and more of those, as the data sources are getting into uncharted territories, and the size of the databases is growing exponentially. There, all these bits and pieces of data are sitting on mysterious “clouds” as entries on their own. Here again, it is one thing to select or filter based on collected data, but ranking based on some statistical modeling is simply not possible in such a structure (or lack thereof). Just ask the database managers how many 24-month active customers they really have, considering a great many people move in that time period and change their addresses, creating multiple entries. If you get an answer like “2 million-ish,” well, that’s another scary moment. (Refer to “Cheat Sheet: Is Your Database Marketing Ready?”)

In order to develop models using variables that are descriptors of customers, not transactions, we must convert those relational or unstructured data into the structure that match the level by which you would like to rank the records. Even temporarily. As the size of databases are getting bigger and bigger and the storage is getting cheaper and cheaper, I’d say that the temporary time period could be, well, indefinite. And because the word “data-mart” is overused and confusing to many, let me just call that place the “Analytical Sandbox.” Sandboxes are fun, and yes, all kinds of fun stuff for marketers and analysts happen there.

The Analytical Sandbox is where samples are created for model development, actual models are built, models are scored for every record—no matter how many there are—without hiccups; targets are easily sorted and selected by model scores; reports are created in meaningful and consistent ways (consistency is even more important than sheer accuracy in what we do), and analytical language such as SAS, SPSS or R are spoken without being frowned up by other computing folks. Here, analysts will spend their time pondering upon target definitions and methodologies, not about database structures and incomplete data fields. Have you heard about a fancy term called “in-database scoring”? This is where that happens, too.

And what comes out of the Analytical Sandbox and back into the world of relational database or unstructured databases—IT folks often ask this question—is going to be very simple. Instead of having to move mountains of data back and forth, all the variables will be in forms of model scores, providing answers to marketing questions, without any missing values (by definition, every record can be scored by models). While the scores are packing tons of information in them, the sizes could be as small as a couple bytes or even less. Even if you carry over a few hundred affinity scores for 100 million people (or any other types of entities), I wouldn’t call the resultant file large, as it would be as small as a few video files, really.

In my future columns, I will explain how to create model-ready (and human-ready) variables using all kinds of numeric, character or free-form data. In Exhibit A, you will see what we call traditional analytical activities colored in dark blue on the right-hand side. In order to make those processes really hum, we must follow all the steps that are on the left-hand side of that big cylinder in the middle. Preventing garbage-in-garbage-out situations from happening, this is where all the data get collected in uniform fashion, properly converted, edited and standardized by uniform rules, categorized based on preset meta-tables, consolidated with consistent IDs, summarized to desired levels, and meaningful variables are created for more advanced analytics.

Even more than statistical methodologies, consistent and creative variables in form of “descriptors” of the target audience make or break the marketing plan. Many people think that purchasing expensive analytical software will provide all the answers. But lest we forget, fancy software only answers the right-hand side of Exhibit A, not all of it. Creating a consistent template for all useful information in a uniform fashion is the key to maximizing the power of analytics. If you look into any modeling bakeoff in the industry, you will see that the differences in methodologies are measured in fractions. Conversely, inconsistent and incomplete data create disasters in real world. And in many cases, companies can’t even attempt advanced analytics while sitting on mountains of data, due to structural inadequacies.

I firmly believe the Big Data movement should be about

  1. getting rid of the noise, and
  2. providing simple answers to decision-makers.

Bragging about the size and the speed element alone will not bring us to the next level, which is to “humanize” the data. At the end of the day (another cliché that I hate), it is all about supporting the decision-making processes, and the decision-making process is all about ranking different options. So, in the interest of keeping it simple, let’s start by creating an analytical haven where all those rankings become easy, in case you think that the sandbox is too juvenile.

B-to-B Prospecting Data Just Keeps Getting Better

The most reliable and scalable approach to finding new B-to-B customers is outbound communications, whether by mail, phone or email, to potential prospects, using rented or purchased lists. B-to-B marketers typically select targets from prospecting lists based on such traditional variables as industry, company size and job role, or title. But new research indicates that B-to-B prospecting data is much more detailed these days, and includes a plethora of variables to choose from

The most reliable and scalable approach to finding new B-to-B customers is outbound communications, whether by mail, phone or email, to potential prospects, using rented or purchased lists. B-to-B marketers typically select targets from prospecting lists based on such traditional variables as industry, company size, and job role or title. But new research (opens as a pdf) indicates that B-to-B prospecting data is much more detailed these days, and includes a plethora of variables to choose from—for refining your targeting, or for building predictive models—to pick your targets even more effectively.

My colleague Bernice Grossman and I recently conducted a new study (opens as a pdf) indicating that B-to-B marketers now have the opportunity to target prospects more efficiently than ever before. In fact, you might say that business marketers now have access to prospecting data as rich and varied as that available in consumer markets.

To get an understanding of the depth of data available to B-to-B marketers for prospecting, we invited a set of reputable vendors to open their vaults and share details about the nature and quantity of the fields they offer. Seven vendors participated, giving us a nice range of data sources, including both compiled lists and response lists.

We provided each vendor with a set of 30 variables that B-to-B marketers often use, including not only company size and industry, but also elements like the year the company was established, fiscal year end, Fortune Magazine ranking, SOHO (small office/home office) business indicator, growing/shrinking indicator, and other useful variables that can give marketers insight into the relative likelihood of a prospect’s conversion to a customer. We learned that some vendors provide all these data elements on most of the accounts on their files, while others offer only a few.

We also asked the participating vendors to tell us what other fields they make available, and this is where things got interesting. In response to our request for sample records on five well-known firms, the reported results included as many as 100 lines per firm. Furthermore, two of the vendors, Harte-Hanks and HG Data, supply details about installed technology, and their fields thus run into the thousands. The quantity was so vast that we published it in a supplementary spreadsheet, so that our research report itself would be kept to a readable size.

Some of the more intriguing fields now available to marketers include:

  • Spending levels on legal services, insurance, advertising, accounting services, utilities and office equipment (Infogroup)
  • Self-identifying keywords used on the company website (ALC)
  • Technology usage “intensity” score, by product (HG Data)
  • Out-of-business indicator, plus credit rating and parent/subsidiary linkages (Salesforce.com)
  • Company SWOT analysis (OneSource)
  • Whether the company conducts e-commerce (ALC)
  • List of company competitors (OneSource)
  • Biographies of company contacts (OneSource)
  • Employees who travel internationally (Harte-Hanks)
  • Employees who use mobile technology (Harte-Hanks)
  • Links to LinkedIn profiles of company managers (Stirista)
  • Executive race, religion, country of origin and second language (Stirista)

Imagine what marketers could do with a treasure trove of data elements like these to help identify high-potential prospects.

Matter of fact, we asked the vendors to tell us the fields that their clients find most valuable for predictive purposes. Several fresh and interesting ideas surfaced:

  • A venture capital trigger, from OneSource, indicating that a firm has received fresh funding and thus has budget to spend.
  • Tech purchase likelihood scores from Harte-Hanks, built from internal models and appended to enhance the profile of each account.
  • A “prospectability” score custom-modeled by OneSource to match target accounts with specific sales efforts.
  • PRISM-like business clusters offered by Salesforce.com (appended from D&B), which provide a simple profile for gaining customer insights and finding look-alikes.
  • “Call status code,” Infogroup’s assessment of the authenticity of the company record, based on Infogroup’s ongoing phone-based data verification program.

We conclude from this study that B-to-B prospecting data is richer and more varied than most marketers would have thought. We recommend that marketers test several vendors, to see which best suit their needs, and conduct a comparative test before you buy.

Readers who would like to see our past studies on the quality and quantity of prospecting data available in business markets can access them here. Bernice and I are always open to ideas for future studies. We welcome your feedback and suggestions.

A version of this article appeared in Biznology, the digital marketing blog.

‘Big Data’ Is Like Mining Gold for a Watch – Gold Can’t Tell Time

It is often quoted that 2.5 quintillion bytes of data are collected each day. That surely sounds like a big number, considering 1 quintillion bytes (or exabytes, if that sounds fancier) are equal to 1 billion gigabytes. … My phone can hold about 65 gigabytes; which, by the way, means nothing to me. I just know that figure equates to about 6,000 songs, plus all my personal information, with room to spare for hundreds of photos and videos. 

It is often quoted that 2.5 quintillion bytes of data are collected each day. That surely sounds like a big number, considering 1 quintillion bytes (or exabytes, if that sounds fancier) are equal to 1 billion gigabytes. Looking back only about 20 years, I remember my beloved 386-based desktop computer had a hard drive that can barely hold 300 megabytes, which was considered to be quite large in those ancient days. Now, my phone can hold about 65 gigabytes; which, by the way, means nothing to me. I just know that figure equates to about 6,000 songs, plus all my personal information, with room to spare for hundreds of photos and videos. So how do I fathom the size of 2.5 quintillion bytes? I don’t. I give up. I’d rather count the number stars in the universe. And I have been in the database business for more than 25 years.

But I don’t feel bad about that. If a pile of data requires a computer to process it, then it is already too “big” for our brains. In the age of “Big Data,” size matters, but emphasizing the size element is missing the point. People want to understand the data in their own terms and want to use them in decision-making processes. Throwing the raw data around to people without math or computing skills is like galleries handing out paint and brushes to people who want paintings on the wall. Worse yet, continuing to point out how “big” the Big Data world is to them is like quoting the number of rice grains on this planet in front of a hungry man, when he doesn’t even care how many grains are in one bowl. He just wants to eat a bowl of “cooked” rice, and right this moment.

To be a successful data player, one must be the master of the following three steps:

  • Collection;
  • Refinement; and
  • Delivery.

Collection and storage are obviously important in the age of Big Data. However, that in itself shouldn’t be the goal. I hear lots of bragging about how much data can be collected and stored, and how fast the data can be retrieved.

Great, you can retrieve any transaction detail going back 20 years in less than 0.5 seconds. Congratulations. But can you now tell me whom are more likely to be loyal customers for the next five years, with annual spending potential of more than $250? Or who is more likely to quit using the service in next 60 days? Who is more likely to be on a cruise ship leaving the dock on the East Coast heading for Europe between Thanksgiving and Christmas, with onboard spending potential greater than $300? Who is more likely to respond to emails with free shipping offers? Where should I open my next store selling fancy children’s products? What do my customers look like, and where do they go between 6 and 9 p.m.?

Answers to these types of questions do not come from the raw data, but they should be derived from the data through the data refinement process. And that is the hard part. Asking the right questions, expressing the goals in a mathematical format, throwing out data that don’t fit the question, merging data from a diverse array of sources, summarizing the data into meaningful levels, filling in the blanks (there will be plenty—even these days), and running statistical models to come up with scores that look like an answer to the question are all parts of the data refinement process. It is a lot like manufacturing gold watches, where mining gold is just an important first step. But a piece of gold won’t tell you what time it is.

The final step is to deliver that answer—which, by now, should be in a user-friendly format—to the user at the right time in the right format. Often, lots of data-related products only emphasize this part, as it is the most intimate one to the users. After all, it provides an illusion that the user is in total control, being able to touch the data so nicely displayed on the screen. Such tool sets may produce impressive-looking reports and dazzling graphics. But, lest we forget, they are only representations of the data refinement processes. In addition, no tool set will ever do the thinking part for anyone. I’ve seen so many missed opportunities where decision-makers invested obscene amounts of money in fancy tool sets, believing they will conduct all the logical and data refinement work for them, automatically. That is like believing that purchasing the top of the line Fender Stratocaster will guarantee that you will play like Eric Clapton in the near future. Yes, the tool sets are important as delivery mechanisms of refined data, but none of them replace the refinement part. Doing so would be like skipping guitar practice after spending $3,000 on a guitar.

Big Data business should be about providing answers to questions. It should be about humans who are the subjects of data collection and, in turn, the ultimate beneficiaries of information. It’s not about IT or tool sets that come and go like hit songs. But it should be about inserting advanced use of data into everyday decision-making processes by all kinds of people, not just the ones with statistics degrees. The goal of data players must be to make it simple—not bigger and more complex.

I boldly predict that missing these points will make “Big Data” a dirty word in the next three years. Emphasizing the size element alone will lead to unbalanced investments, which will then lead to disappointing results with not much to show for them in this cruel age of ROI. That is a sure way to kill the buzz. Not that I am that fond of the expression “Big Data”; though, I admit, one benefit has been that I don’t have to explain what I do for living for 10 minutes any more. Nonetheless, all the Big Data folks may need an exit plan if we are indeed heading for the days when it will be yet another disappointing buzzword. So let’s do this one right, and start thinking about refining the data first and foremost.

Collection and storage are just so last year.